This is a legacy page. Please click here to view the latest version.
Fri 6 Jan 2017, 12:23 GMT

ExxonMobil tackles fuel compatibility and stability in latest video


Oil major's video covers fuel mixing, asphaltene precipitation and fuel testing.



Oil major and bunker supplier ExxonMobil has released its latest 'ExxonMobil Insights' video, which covers issues related to fuel compatibility and stability.

The main topics discussed are: avoiding fuel mixing, asphaltene precipitation and build-up, and fuel testing.

Sludge build-up

The new online video points out that cheaper residual fuel, or heavy fuel oil (HFO), can often contain a high level of asphaltenes. This can lead to problems if stored for a long time.

"If bulk fuel oil has been stored for long periods, it can become unstable. This can cause the asphaltenes to precipitate out, creating sludge, which has the potential to block pipes, pumps and filters. The higher the asphaltene content, the greater the sludge potential," the video says.

Related to this is the issue of fuel incompatibility and the problems it can cause. Michael Green, Global Technical Manager at Intertek, points out that the incompatibility of fuels can lead to significant sludge formation, which in turn can result in engine blackout.

"If fuels with greatly differing asphaltene content combine, these asphaltenes can coalesce into sludge, potentially blocking filters and pipes, leading to engine starvation and power loss," the video adds.

In order to mimimize compatibility issues, ExxonMobil suggests the following precautions are taken:

- Avoid mixing bunker fuels from different sources.

- Choose fuels with a similar viscosity and density.

- Do not mix HFO with marine gas oil (MGO).

Sample testing

When bunkering, ExxonMobil advises ship operators to always test a sample blend to ensure that the mix of the fuels will not trigger compatibility problems.

"Is the fuel going to cause any potential damage to the engine system when it is used? It's very, very important for the crew to know exactly what they have received, [so] that it can be treated appropriately before it is injected into the main engine," Intertek's Michael Green says.

The video goes on to explain the standard procedure for two basic test methods: sediment and spot testing.

The ISO 8217 total sediment potential test is generally carried out in fuel testing labs. During the test, the fuel is maintained at an elevated temperature for 24 hours and then vacuum-filtered to look at the residual weight of the sediment that is actually present within the fuel.

The ASTM D4740 spot test is a simple procedure that can be carried out on board a vessel. In this test, a blend of fuels is homogenized and heated before being dropped onto a test paper, which is then placed in an oven at 100C. After an hour, the paper is removed and the resulting spot compared to a reference chart. If the two fuels are compatible, one large spot should be visible without an asphaltenic ring in the middle; but if the two fuels are incompatible, a black ring will develop within the actual spot itself.

ExxonMobil products

To help reduce compatibility issues, ExxonMobil has developed premium ECA-category products that are designed to breach the compatibility gap that can exist between distillate and heavy fuel oil.

ExxonMobil Premium HDME 50 is a heavy distillate fuel that is said to be compatible with MGO and ECA-compliant. ExxonMobil Premium AFME 200, meanwhile, is said to be fully compatible with ExxonMobil Premium HDME 50 and MGO.

A link to the video has been provided below.

ExxonMobil Insights 4: Fuel compatibility and stability


New Sea Generation (NSG) logo. New Sea Generation processing applicants for Greece bunker trader role  

Bunker firm offering a performance-based equity stake to experienced traders with active client portfolios.

Port of Barcelona. Spanish ports see fourfold increase in LNG bunkering volumes over two years  

Renewable bioLNG accounted for 12% of marine fuel supplied in 2025, Gasnam data shows.

ICS Deck Procedures Guide cover. ICS releases deck procedures guide covering alternative fuel bunkering  

Publication completes trilogy of operational guides alongside bridge and engine room resources.

Torbjörn Bäck, Echandia. Echandia to supply 3 MWh battery system for Singapore harbour tugboat  

Swedish firm wins contract as part of Singapore's plan to electrify harbour craft by 2030.

Golden Antares and Brave Pioneer methanol bunkering. Singapore completes first methanol bunkering operation following licence awards  

Golden Island delivers 300 tonnes of methanol to dual-fuel vessel in port’s inaugural operation.

MT SPA vessel. Union Maritime takes delivery of world’s first LNG- and wind-powered LR2 tanker  

MT SPA features dual-fuel capability and WindWings technology, with second sister vessel on order.

Petrobras and Transpetro signing ceremony. Petrobras and Transpetro order 41 vessels worth $470m for fleet renewal  

Brazilian state oil companies contract gas carriers, barges and pushboats from domestic shipyards.

European Commission headquarters. EU proposes phase-out of high-risk biofuels from renewable energy targets by 2030  

Draft regulation sets linear reduction trajectory starting in 2024, with contribution reaching zero by end of decade.

Vessel with H2SITE ammonia cracking system. H2SITE launches Norwegian subsidiary to advance ammonia-to-power technology for maritime sector  

Spanish technology firm establishes Bergen hub to accelerate deployment of ammonia cracking systems for shipping.

CMA CGM Monte Cristo vessel. CMA CGM names 400th owned vessel as methanol-fuelled containership  

French shipping line reaches fleet ownership milestone with 15,000-teu dual-fuel methanol vessel.


↑  Back to Top