Tue 18 Oct 2016, 08:54 GMT

MIT professor develops skin-inspired barnacle solution


Research project fuses hydrogels with elastomers using benzophenone as a bonding agent.



Individually, tiny barnacles pose little threat to hulking ships. But when clustered in thick clumps on a vessel's hull - a natural occurrence called biofouling - these sticky crustaceans can slow the ship and increase its fuel consumption by 40 percent.

To deal with this small yet expensive pest, the U.S. Navy's Office of Naval Research (ONR) is sponsoring work by Dr. Xuanhe Zhao, an associate professor at the Massachusetts Institute of Technology (MIT). Zhao and his team have created an adhesive material that is said to help barnacle-fighting coatings stick to metal hulls better and longer; retain moisture and not dry out; and avoid the use of toxic chemicals and other pollutants.

"Biofouling is a major concern for the Navy, leading to hundreds of millions of dollars a year in fuel and maintenance costs," said Dr. Steve McElvany, a program manager in ONR's Sea Warfare and Weapons Program, who oversees Zhao's research. "It's especially bad when the ship is docked in port. Barnacles like those environments and tend to accumulate rapidly, in large quantities."

Barnacles are adversaries as old as sailing itself. For centuries, mariners fought the crustaceans with everything from tar to wax. Currently, the Navy uses copper-based paints and coatings to kill barnacles or prevent them from latching onto hulls. While effective, these toxic materials leach into the water, negatively impacting aquatic life. The Navy is seeking environmentally-friendly coatings that can keep hulls clean and reduce fuel costs.

One solution vital to Zhao's efforts could be hydrogels, which can absorb water and hold it in the form of a gel. These extremely soft, slippery substances can be spread on a ship's underside like sealant to prevent barnacles from sticking to the metal. Barnacles prefer hard, solid spots to attach themselves and don't like surfaces such as hydrogels.

Zhao's research addresses the challenge of keeping hydrogel coatings soft, wet and securely fastened to metal hulls. Using a chemical bonding agent called benzophenone, his team devised a way to fuse hydrogels with elastomers - elastic polymers like silicone and natural rubber that are stretchy, durable and impervious to water. The result is a sticky, water-trapping barrier which keeps hydrogels robust enough to potentially withstand the harsh hull conditions of a ship at sea.

"Our approach was inspired by human skin," said Zhao. "The skin has an outer epidermis that protects nerves, capillaries, muscles and organs, and keeps them from drying out - maintaining their compliance. However, we can actually stretch the hydrogel-elastomer hybrid to seven times its original length and the bond still holds. It's that strong and flexible."

The hybrid also has potential as a circuit for transporting ions, which are electrically-charged molecules. These natural circuits could be used to detect the presence of barnacles on a hull, said Zhao. Once the crustaceans are identified, a specially designed hydrogel could pump barnacle-repelling enzymes via grooves etched into the elastomer.

In addition to biofouling defence, Zhao believes the hybrid material might also be used as a smart bandage outfitted with electronics and drug reservoirs - allowing it to monitor wounds and vital signs like body temperature, detect bacteria and administer antibiotics, and alert a doctor when more medicine is required.

"Our main focus is helping the Navy deal with the issue of biofouling," said Zhao, "but it's also exciting to think of the other possibilities for this material. This is still very basic research, but we envision numerous potential applications and uses for hydrogels and elastomers."

Zhao is a 2014 winner of ONR's Young Investigator Program, a prestigious grant awarded to scientists and engineers with exceptional promise for producing creative, state-of-the-art research which appears likely to advance naval capabilities.


Global Ethanol Association (GEA) and Vale logo side by side. Vale joins Global Ethanol Association as founding member  

Brazilian mining company becomes founding member of association focused on ethanol use in maritime sector.

KPI OceanConnect Logo. KPI OceanConnect seeks marine fuel trading intern in Singapore  

Bunker supplier advertises role offering exposure to commercial and operational aspects of marine fuel business.

Frank Dahan, CSL Group. CSL Group's Frank Dahan appointed chair of IBIA's Americas regional board  

Dahan brings 29 years of marine transportation and energy experience to the role.

IMO Member States, Belgium delegation. Lloyd's Register, EXMAR, and Belgium’s Federal Public Service develop interim guidelines for ammonia cargo as fuel  

Guidelines expected to receive formal IMO approval in May 2026, enabling ammonia use on gas carriers.

Knut Ørbeck-Nilssen, DNV. DNV to lead Nordic roadmap Phase 2 for zero-carbon shipping transition  

Programme will identify green corridors and tackle cost barriers through new financing approaches.

Monjasa logo. Monjasa seeks trader for Dubai operations  

Marine fuel supplier recruiting for trading role covering sales, purchasing, and logistics in UAE.

IBIA Board Elections 2026 – Call for Nominations announcement. IBIA calls for board election nominations ahead of Friday deadline  

Association seeks candidates for 2026 board positions with submissions closing 12 December.

Fraua vessel. BMT Bunker adds tanker MT Fraua to fleet  

BMT Bunker und Mineralöltransport has expanded its fleet with a new vessel.

Ruby bunkering vessel. Island Oil expands Cyprus bunkering fleet with vessel Ruby  

Island Oil adds second bunkering vessel to strengthen marine fuel supply operations in Cyprus.

Wärtsilä and Aalto University partnership signing. Wärtsilä and Aalto University extend R&D partnership to accelerate marine decarbonisation  

Five-year agreement expands international collaboration on alternative fuels and clean energy technologies.