Tue 16 Feb 2010 11:42

New tool developed to investigate marine emissions


Researchers use identification system to model ship emissions in the Baltic Sea.



A new tool used to investigate exhaust emissions of marine vessels has been developed and applied to shipping in the Baltic Sea.

The Baltic Sea is a busy maritime region with 3500-5000 ships operating in the area every month. Emissions from shipping contribute significantly to atmospheric pollution.

In May 2006, the Baltic Sea was the first area designated a 'SOx (sulphur oxides) Emission Control Area' (SECA). In October 2008, revised regulations to reduce harmful pollution from ships were adopted by the International Maritime Organisation (IMO), including proposals to set regional nitrogen oxides limits and a change to almost sulphur-free marine fuels by 2020.

The new modelling system is outlined in a document entitled "A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area" by Finnish researchers J.P. Jalkanen, A. Brink, J. Kalli, H. Pettersson, J. Kukkonen, and T. Stipa.

The researchers modelled ship emissions (sulphur oxides, nitrogen oxides and carbon dioxide) in the Baltic Sea using Automatic Identification System (AIS) data as a starting point. AIS is a navigational aid used to identify and track ships to reduce the risk of collision, and is required by the IMO on larger ships. The AIS messages enable ship positions and speeds to be more accurately monitored, by updating the location of ships at 1 second intervals.

Technical information, including any emission abatement techniques, on more than 20,000 ships is stored in the model's database. Using the speed and technical data of the ship, the use of the main and auxiliary engines is calculated, from which the fuel consumption and exhaust emissions for the ship is estimated. The effect of waves on the fuel consumption of ships can also be calculated.

Taking the year 2007 as an example, the study estimated that:

* 400 kilotons (kt) of nitrogen oxides, 138 kt of sulphur dioxide and 19 megatons of carbon dioxide were emitted in the Baltic Sea area.

* shipping fuel consumption was 6205 kt, which corresponds to 265 PJ (petajoules, i.e. 1015 joules) of energy consumed.

* the greatest number of ships is observed in summer due to increased passenger traffic: there were 3700 ships in February compared with around 4500 ships during June, July and August.

* new ships (built after 1 January 2000) contributed 39 and 43 per cent, respectively, to annual nitrogen oxides and sulphur oxides emissions. (Modern ships tend to be larger than older ships).

* over 25 per cent of total emissions of nitrogen oxides, sulphur oxides and carbon dioxide originated from 'roll-on-roll-off' passenger ships (RoPax) ships, despite these ships accounting for only 5 per cent of ship types travelling in the Baltic Sea.

* container ships emitted 8 per cent of total emissions, despite accounting for just 4 per cent of all ship types.

* half of nitrogen oxide emissions came from ships registered in countries which surround the Baltic Sea, about one third from ships registered outside the EU and the remainder from ships from other EU countries.

The model can be used to evaluate the effects of emission abatement policies, such as emission-based charges in shipping lanes, or the health effects of regional or long-range atmospheric transport of pollutants. In addition, provided that the relevant AIS information is available, the model can be used to estimate shipping emissions in any sea area of the world.

The 18-page study can be found at the following address:

http://www.atmos-chem-phys-discuss.net/9/15339/2009/acpd-9-15339-2009-print.pdf


CEO, Fredrik Witte and CFO, Mette Rokne Hanestad. Corvus Energy raises $60m from consortium for maritime battery expansion  

Norwegian energy storage supplier secures growth capital to accelerate zero-emission shipping solutions.

Indian Register of Shipping hosts at LISW 2025. Shipping industry warned nuclear power is essential to meet 2050 net zero targets  

Experts say government backing is needed for nuclear investment.

Rendering of LNG bunkering vessel Avenir TBN. ExxonMobil enters LNG bunkering with two vessels planned for 2027  

Energy company to charter vessels from Avenir LNG and Evalend Shipping for marine fuel operations.

Logos of international maritime associations supporting IMO Net Zero Framework. Shipping associations back IMO Net-Zero Framework ahead of key vote  

Seven international associations urge governments to adopt comprehensive decarbonisation rules at IMO meeting.

Concept illustration of biofuel and renewable energy production. Study claims biofuels emit 16% more CO2 than fossil fuels they replace  

Transport & Environment report challenges biofuels as climate solution ahead of COP30.

Rendering of Green Ammonia FPSO. ABB to supply automation systems for floating green ammonia production vessel  

Technology firm signs agreement with SwitcH2 for Portuguese offshore facility producing 243,000 tonnes annually.

VPS launches VeriSphere digital platform. VPS launches Verisphere digital platform to streamline marine fuel decarbonisation tools  

New ecosystem connects multiple maritime emissions solutions through single user interface.

Wallenius Sol vessel Botnia Enabler. Wallenius Sol joins Gasum's FuelEU Maritime compliance pool as bio-LNG generator  

Partnership aims to help shipping companies meet EU carbon intensity requirements through bio-LNG pooling.

IAPH Clean Marine Fuels Working Group. IAPH launches products portal with ammonia bunker safety checklist  

Port association releases industry-first ammonia fuel checklist alongside updated tools for alternative marine fuels.

Berkel AHK Logo. Berkel AHK joins Global Ethanol Association as founding member  

German ethanol producer becomes founding member of industry association focused on marine fuel applications.