Fri 30 Dec 2016 07:51

DOE funds project to accelerate introduction of fuels for low-emission engines


$7 million to be distributed to eight universities participating in the Co-Optima initiative.



The United States Department of Energy (DOE) has announced up to $7 million for eight universities to accelerate the introduction of affordable, scalable, and sustainable high-performance fuels for use in high-efficiency, low-emission engines.

Under the Co-Optimization of Fuels and Engines (Co-Optima) initiative, the DOE's Bioenergy Technologies Office aims to maximize energy savings whilst reducing transportation-related petroleum consumption and emissions.

The DOE has selected eight universities under the Co-Optima funding initiative:

Cornell University (Ithaca, New York): Cornell University, in partnership with the University of California, San Diego, will examine the combustion characteristics of several diesel/biofuel blends. This will provide the information needed to understand how these blends burn compared to traditional petroleum-based fuels to help design cleaner, more efficient combustion engines.

University of Michigan (Ann Arbor, Michigan): The University of Michigan will develop an engine combustion model using software that is capable of simulating a range of different parameters that could occur in a combustion chamber, such as combustion duration, flame speed, and pressure development. The system will be designed to maximize ease of use, reliability and accuracy, as well as to reduce the expense of a full engine cycle simulation by 80% relative to the current state of the art. The data gained from the model can help maximize alternative fuel performance and will be used to guide engine manufacturers.

University of Michigan-Dearborn (Dearborn, Michigan): The University of Michigan-Dearborn, with partner Oakland University, will use a miniature ignition screening rapid compression machine - an experimental apparatus used to study ignition properties - to gain a better understanding of the ignition and combustion characteristics (e.g., ignition delay) of alternative fuels. This novel method streamlines the evaluation of auto-ignition performance without the need for more extensive and costly engine testing.

University of Alabama (Tuscaloosa, Alabama): The University of Alabama will examine the combustion properties of biofuels and blends using advanced diagnostic techniques under realistic advanced compression ignition (ACI) engine conditions. ACI engines can deliver both high efficiencies and low emissions. The goal is to create a model to predict combustion properties of various fuel blends to help optimize its use in ACI engines.

Louisiana State University (Baton Rouge, Louisiana): Louisiana State University, along with partners Texas A&M and University of Connecticut, will develop a method that efficiently characterizes alternative fuel candidates along with associated models and metrics for predicted engine performance.

Massachusetts Institute of Technology (Cambridge, Massachusetts): Massachusetts Institute of Technology, in partnership with University of Central Florida, will develop detailed kinetic models for several biofuels using an advanced computational approach. The project will construct computer models to predict the combustion chemistry of proposed biofuels, which can then be used to determine which of the proposed fuels will have high performance in advanced engines.

Yale University (New Haven, Connecticut): Yale University, along with the Pennsylvania State University, will measure sooting tendencies of various biofuels and develop emission indices relevant to real engines. This will enable the selection of biomass-derived fuels that minimize soot emissions in next-generation engines.

University of Central Florida (Orlando, Florida): The University of Central Florida will generate fuel characterization data by measuring and evaluating important performance metrics like fuel spray atomization, flame topology, volatility, viscosity, soot/coking, and compatibility for prioritized fuels. The research will characterize and predict combustion properties of biomass-based, low-emission fuels and blends in engine-relevant conditions.

Chart showing percentage of off-spec and on-spec samples by fuel type, according to VPS. Is your vessel fully protected from the dangers of poor-quality fuel? | Steve Bee, VPS  

Commercial Director highlights issues linked to purchasing fuel and testing quality against old marine fuel standards.

Ships at the Tecon container terminal at the Port of Suape, Brazil. GDE Marine targets Suape LSMGO by year-end  

Expansion plan revealed following '100% incident-free' first month of VLSFO deliveries.

Hercules Tanker Management and Hyundai Mipo Dockyard sign bunker vessel agreement Peninsula CEO seals deal to build LNG bunker vessel  

Agreement signed through shipping company Hercules Tanker Management.

Illustration of Kotug tugboat and the logos of Auramarine and Sanmar Shipyards. Auramarine supply system chosen for landmark methanol-fuelled tugs  

Vessels to enter into service in mid-2025.

A Maersk vessel, pictured from above. Rise in bunker costs hurts Maersk profit  

Shipper blames reroutings via Cape of Good Hope and fuel price increase.

Claus Bulch Klausen, CEO of Dan-Bunkering. Dan-Bunkering posts profit rise in 2023-24  

EBT climbs to $46.8m, whilst revenue dips from previous year's all-time high.

Chart showing percentage of fuel samples by ISO 8217 version, according to VPS. ISO 8217:2024 'a major step forward' | Steve Bee, VPS  

Revision of international marine fuel standard has addressed a number of the requirements associated with newer fuels, says Group Commercial Director.

Carsten Ladekjær, CEO of Glander International Bunkering. EBT down 45.8% for Glander International Bunkering  

CFO lauds 'resilience' as firm highlights decarbonization achievements over past year.

Anders Grønborg, CEO of KPI OceanConnect. KPI OceanConnect posts 59% drop in pre-tax profit  

Diminished earnings and revenue as sales volume rises by 1m tonnes.

Verde Marine Homepage Delta Energy's ARA team shifts to newly launched Verde Marine  

Physical supplier offering delivery of marine gasoil in the ARA region.


↑  Back to Top