Tue 18 Oct 2016, 08:54 GMT

MIT professor develops skin-inspired barnacle solution


Research project fuses hydrogels with elastomers using benzophenone as a bonding agent.



Individually, tiny barnacles pose little threat to hulking ships. But when clustered in thick clumps on a vessel's hull - a natural occurrence called biofouling - these sticky crustaceans can slow the ship and increase its fuel consumption by 40 percent.

To deal with this small yet expensive pest, the U.S. Navy's Office of Naval Research (ONR) is sponsoring work by Dr. Xuanhe Zhao, an associate professor at the Massachusetts Institute of Technology (MIT). Zhao and his team have created an adhesive material that is said to help barnacle-fighting coatings stick to metal hulls better and longer; retain moisture and not dry out; and avoid the use of toxic chemicals and other pollutants.

"Biofouling is a major concern for the Navy, leading to hundreds of millions of dollars a year in fuel and maintenance costs," said Dr. Steve McElvany, a program manager in ONR's Sea Warfare and Weapons Program, who oversees Zhao's research. "It's especially bad when the ship is docked in port. Barnacles like those environments and tend to accumulate rapidly, in large quantities."

Barnacles are adversaries as old as sailing itself. For centuries, mariners fought the crustaceans with everything from tar to wax. Currently, the Navy uses copper-based paints and coatings to kill barnacles or prevent them from latching onto hulls. While effective, these toxic materials leach into the water, negatively impacting aquatic life. The Navy is seeking environmentally-friendly coatings that can keep hulls clean and reduce fuel costs.

One solution vital to Zhao's efforts could be hydrogels, which can absorb water and hold it in the form of a gel. These extremely soft, slippery substances can be spread on a ship's underside like sealant to prevent barnacles from sticking to the metal. Barnacles prefer hard, solid spots to attach themselves and don't like surfaces such as hydrogels.

Zhao's research addresses the challenge of keeping hydrogel coatings soft, wet and securely fastened to metal hulls. Using a chemical bonding agent called benzophenone, his team devised a way to fuse hydrogels with elastomers - elastic polymers like silicone and natural rubber that are stretchy, durable and impervious to water. The result is a sticky, water-trapping barrier which keeps hydrogels robust enough to potentially withstand the harsh hull conditions of a ship at sea.

"Our approach was inspired by human skin," said Zhao. "The skin has an outer epidermis that protects nerves, capillaries, muscles and organs, and keeps them from drying out - maintaining their compliance. However, we can actually stretch the hydrogel-elastomer hybrid to seven times its original length and the bond still holds. It's that strong and flexible."

The hybrid also has potential as a circuit for transporting ions, which are electrically-charged molecules. These natural circuits could be used to detect the presence of barnacles on a hull, said Zhao. Once the crustaceans are identified, a specially designed hydrogel could pump barnacle-repelling enzymes via grooves etched into the elastomer.

In addition to biofouling defence, Zhao believes the hybrid material might also be used as a smart bandage outfitted with electronics and drug reservoirs - allowing it to monitor wounds and vital signs like body temperature, detect bacteria and administer antibiotics, and alert a doctor when more medicine is required.

"Our main focus is helping the Navy deal with the issue of biofouling," said Zhao, "but it's also exciting to think of the other possibilities for this material. This is still very basic research, but we envision numerous potential applications and uses for hydrogels and elastomers."

Zhao is a 2014 winner of ONR's Young Investigator Program, a prestigious grant awarded to scientists and engineers with exceptional promise for producing creative, state-of-the-art research which appears likely to advance naval capabilities.


Varsha Sudheer, Island Oil. Island Oil appoints Varsha Sudheer as senior trader in Dubai  

Marine fuel supplier strengthens trading platform with new hire at recently established UAE hub.

Bitoil Group logo. Bitoil Group seeks bunker trader for Dubai operations  

Dubai-based company is recruiting for a senior bunker trader role to manage global fuel sales and procurement.

Hiring concept with puzzle pieces and a magnifying glass. Uni-Fuels seeks bunker traders for new London operation  

Singapore-headquartered firm advertises position as part of UK expansion.

Hiring concept with puzzle pieces. Uni-Fuels seeks bunker traders for new Piraeus office  

Nasdaq-listed marine fuel provider advertises positions as part of expansion into Greek market.

Sleipner RoRo vessel render. Wing sails could cut fuel use by 9% on expedition cruise vessels, study finds  

Wallenius Marine and Salén Ship Management examine wind propulsion potential beyond cargo shipping.

C-Flexer RoRo vessel render. Stena RoRo orders C-Flexer RoRo vessels with battery-hybrid propulsion for 2029 delivery  

Swedish shipowner places order with China Merchants Industry for next-generation vessels designed by NAOS.

IMO Technical Seminar on Marine Biofuels graphic. IMO to host technical seminar on marine biofuels in February  

Event at London headquarters will examine recent experiences and future prospects for biofuels in shipping.

Maritime Cleantech Enabling Ammonia Bunkering seminar graphic. H2SITE to present ammonia cracking technology at Bergen maritime seminar  

Spanish firm to showcase dual-environment hydrogen production system for vessels and ports at Maritime CleanTech event.

The Arctic and black carbon graphic. Clean Arctic Alliance urges Canada, Iceland and Norway to back polar fuels proposal at IMO  

Environmental coalition calls on three Arctic nations to support Denmark-led measure on black carbon emissions.

Valenciaport and Port of Santos MoU signing. Valencia and Santos ports establish green corridor to decarbonise transatlantic trade  

Ports sign agreement to promote low-emission fuels and shore power on Europe–South America route.