This is a legacy page. Please click here to view the latest version.
Tue 10 Jul 2018, 09:25 GMT

Researchers claim methanol breakthrough in bid to reach climate 'holy grail'


Could be key step towards producing methanol using renewable energy in a process that essentially recycles CO2.


Chunshan Song (left) and Xiao Jiang (right) are two Penn State researchers investigating ways to use carbon dioxide as a raw material to create fuels.
Image credit: Penn State University
Researchers at Penn State University, US, claim to have made "dramatic improvements" to the process of converting carbon dioxide into methanol fuel by combining two metals - palladium and copper - to develop a new catalyst.

The development could be a step towards achieving what researcher Chunshan Song describes as 'the holy grail for combating climate change', and "even better than carbon-neutral or renewable fuels", where fuels are made from carbon dioxide using renewable energy in a process that essentially recycles carbon dioxide.

Walnut to football field: finding the most efficient catalyst

A key factor in converting carbon dioxide to methanol was finding a good catalyst so that methanol could be produced at an efficient rate.

Using the palladium-to-copper atomic ratio range of 0.3 to 0.4, the combination of palladium and copper is said to have yielded the most efficient conversion of methanol from carbon dioxide using nanoparticles of the catalyst dispersed on a porous support material that increased the surface area of the catalyst.

With a catalyst the size of a walnut, the internal surface area of the catalyst can cover the area of a football field, the researchers explain.

The study also found that the new formulations, using the precise atomic ratio of the two metals, increased the rate of methanol formation by three times over palladium alone and by four times over copper alone, representing a significant improvement over previous methods.

Cat-and-mouse conversion

Comparing the process to a cat catching a mouse on the surface of a catalyst, the researchers point out that for the conversion to occur, both carbon dioxide (the cat) and hydrogen (the mouse) were required.

Additionally, the ideal conditions were also needed for the 'cat' to successfully catch the 'mouse': if the cat is not able to reach the mouse, or conditions slow it down, then the cat has less success.

But by combining the two metals, it not only lowers the energetic requirements to speed up the reaction of carbon dioxide and hydrogen, but also alters the reaction pathways to produce a more desired product with higher energy efficiency, the researchers explain.

"Conventional studies focused on copper but that doesn't yield efficient results," said Chunshan Song, a Professor at the Department of Chemical Engineering and Director of the EMS Energy Institute at the Pennsylvania State University. "It's the same for palladium. But putting palladium and copper together creates a unique surface structure that shows a special selectivity to creating methanol from carbon dioxide. This study provides the fundamental insights into the very synergetic effects of using these two metals together."

The process

To create methanol, researchers pumped hydrogen and carbon dioxide into a sealed chamber of a reactor vessel packed with the catalyst and heated the contents to between 356 and 482 degrees Fahrenheit.

The carbon dioxide hydrogenation process works by decomposing water to create a hydrogen gas using renewable energy, which then bonds with the carbon dioxide on the surface of the catalyst to create methanol.

'Holy grail' for beating climate change

According to Song, the efficient production of fuels and industrial chemicals from carbon dioxide using renewable energy is "the holy grail for combating climate change because the fuels are even better than carbon-neutral or renewable fuels".

The process essentially converts greenhouse gases to fuels that emit carbon dioxide when burned. When combined with the capture of carbon dioxide from the environment, it amounts to recycling carbon dioxide instead of creating or avoiding it.

"Our current energy system largely relies on carbon-based fossil energies," Song remarked. "Even renewable fuels such as biomass, biogas and organic waste, they are all carbon-based. But in the future, where does carbon come from? If we begin using carbon from carbon dioxide, we can recycle it, create a sustainable carbon-based energy cycle, and then we stabilize the carbon dioxide concentration in the atmosphere. That's why I'm passionate about this."

Recent research developments involving methanol

Last year, researchers at the University of Liverpool claimed a breakthrough in the direct conversion of carbon dioxide and methane into liquid fuels using a non-thermal plasma process said to offer a 'promising and attractive' alternative for the synthesis of fuels.

Also in the UK, scientists in Wales claimed to have created methanol from the air around us - from methane using simple catalysis that allows methanol production at low temperatures using oxygen and hydrogen peroxide.


Maritime and Port Authority of Singapore logo. Singapore opens applications for additional LNG bunkering licences  

Maritime and Port Authority sets 27 March deadline for operators seeking new supply permits.

A cargo port in Singapore. Singapore reports record marine fuel sales and container throughput in 2025  

Port of Singapore handled 56.77 million tonnes of marine fuel, up 3.4% year-on-year.

Grande Manila naming ceremony. Grimaldi takes delivery of seventh ammonia-ready car carrier Grande Manila  

The 9,241-ceu vessel was delivered in Shanghai and begins Asia–Europe service this week.

Barcelona Maersk naming ceremony. Maersk takes delivery of final 17,480-teu dual-fuel containership  

Barcelona Maersk completes six-vessel class built with HD Hyundai Heavy Industries in South Korea.

Container terminal with stacked containers. Ports face 2030 deadline for shore power as only 20% of EU connections installed  

TT Club warns European ports lag behind on onshore power supply infrastructure ahead of mandatory 2030 regulations.

Viking Cinderella vessel. Viking Line reports cargo record and tenfold biogas increase in 2025  

Baltic Sea ferry operator transported 139,484 cargo units while reducing greenhouse gas emissions by 60,000 tonnes.

Hartman Seatrade vessel render. Hartman Seatrade orders Wärtsilä 31 engine for new heavy lift vessel  

Dutch operator selects fuel-efficient engine and propulsion package for 3,800-dwt newbuild at Rock Shipbuilding.

Sustainable sign. Superalfuel workshop to examine safety and sustainability of alternative marine fuels  

Event in Montenegro will focus on hydrogen, ammonia, and methanol deployment in port areas.

Uniper and AM Green agreement signing. Uniper signs deal for up to 500 kt/yr of renewable ammonia from AM Green  

Agreement marks first long-term RFNBO-certified renewable ammonia offtake deal for an Indian company.

Panama Canal Authority and Monjasa partnership signing. Panama Canal Authority and Monjasa sign five-year cooperation agreement  

Partnership to fund community projects in Panama Canal Watershed focused on environment and education.


↑  Back to Top