Fri 26 Aug 2016 09:55

New barnacle research may lead to new ship coating to improve fuel efficiency


Bacteria could be the cause of barnacle buildup on ships, according to latest research.



The coating of barnacles and other growth along the bottoms of boats is more than just an eyesore. Biofouling, as it is known, slows down ships and results in lower fuel efficiency.

"Biofouling is an economic issue," said San Diego State University biologist Nick Shikuma.

A new study by Shikuma identifies key developmental steps these waterborne organisms must take to metamorphose from their larval to adult state. Understanding this process could lead to new technologies to prevent the organisms from attaching to ships in the first place.

Shikuma studies the life cycles of sea creatures like barnacles, sea squirts, urchins and tubeworms. A unique feature of these organisms is their reliance on a bacterial cue present in the environment to trigger metamorphosis. The specific bacteria they interact with have tiny, spear-like appendages that shoot out into the cells of the sea organisms and spur their metamorphosis. It's during this metamorphic stage that the organisms settle upon a surface like a ship bottom.

"Bacteria-induced metamorphosis has been known to happen for almost a century, but no one knows how it works," says Shikuma, a member of SDSU's Viral Information Institute. The institute, led by biologists Forest Rohwer and Anca Segall, is at the forefront of investigations into microbial genomics.

Hoping to learn more, he and colleagues sequenced the genome of the tubeworm Hydroides elegans, a frequent biofouling offender that leaves behind calcium carbonate tubes that stick to boats. To see which genes were active during metamorphosis, Shikuma introduced P. luteoviolacea bacteria to the tubeworms to kick off their metamorphosis and then analyzed the worms' gene expression across different stages of its development.

The team found that a particular chain of proteins, known as the MAPK signaling pathway, is activated during metamorphosis. Did the bacteria spur the genes responsible for this process? To find out, the researchers repeated the experiment using genetically modified versions of P. luteoviolacea, some with functioning spear appendages and some with malfunctioning ones.

When the larval tubeworms were exposed to the bacteria with malfunctioning spears, their MAPK pathways showed less activation. The larvae began the initial stages of their metamorphosis but failed to complete the process, eventually reverting back to a larval state.

In other words, a normal interaction between the bacteria's spears and the tubeworm's MAPK pathway appears necessary for the tubeworms to successfully reach their adult stage. The researchers received funding from the U.S. Office of Naval Research for the work and published their findings in the Proceedings of the National Academy of Sciences.

Shikuma suspects similar organisms like barnacles and urchins might rely upon the same interaction with bacteria to complete their lifecycles. If so, researchers may one day be able to develop a ship coating with biological properties that inhibit the bacteria's metamorphosis cue or the organisms' MAPK pathways. Other potential applications include aiding the husbandry of marine animals for aquaculture or stimulating coral reef growth in areas decimated by reef loss.

On a broader scale, Shikuma's findings elucidate the complex, intricate and largely understudied interactions between animals and bacteria. There are likely many other developmental processes and health effects influenced by these interactions - in humans as well as other animals - that have yet to be discovered.

"Tubeworms serve as a model organism to understand how bacteria can orchestrate the dramatic development of animals," Shikuma said. "It's largely unknown how the interaction between bacteria and animals leads to normal development, health and wellbeing."

Preemraff Göteborg, Preem's wholly owned refinery in Gothenburg, Sweden. VARO Energy expands renewable portfolio with Preem acquisition  

All-cash transaction expected to complete in the latter half of 2025.

Pictured: Biofuel is supplied to NYK Line's Noshiro Maru. The vessel tested biofuel for Tohoku Electric Power in a landmark first for Japan. NYK trials biofuel in milestone coal carrier test  

Vessel is used to test biofuel for domestic utility company.

Pictured (from left): H-Line Shipping CEO Seo Myungdeuk and HJSC CEO Yoo Sang-cheol at the contract signing ceremony for the construction of an 18,000-cbm LNG bunkering vessel. H-Line Shipping orders LNG bunkering vessel  

Vessel with 18,000-cbm capacity to run on both LNG and MDO.

Stanley George, VPS Group Technical and Science Manager, VPS. How to engineer and manage green shipping fuels | Stanley George, VPS  

Effective management strategies and insights for evolving fuel use.

Sweden flag with water in background. Swedish government bans scrubber wastewater discharges  

Discharges from open-loop scrubbers to be prohibited in Swedish waters from July 2025.

The ME-LGIA test engine at MAN's Research Centre Copenhagen. MAN Energy Solutions achieves 100% load milestone for ammonia engine  

Latest tests validate fuel injection system throughout the entire load curve.

Terminal Aquaviário de Rio Grande (TERIG), operated by Transpetro. Petrobras secures ISCC EU RED certification for B24 biofuel blend at Rio Grande  

Blend consisting of 24% FAME is said to have been rigorously tested to meet international standards.

Avenir LNG logo on sea background. Stolt-Nielsen to fully control Avenir LNG with acquisition  

Share purchase agreement to buy all shares from Golar LNG and Aequitas.

Seaspan Energy's 7,600 cbm LNG bunkering vessel, s1067, built by Nantong CIMC Sinopacific Offshore & Engineering Co., Ltd. Bureau Veritas supports launch of CIMC SOE's LNG bunkering vessel  

Handover of Seaspan Energy's cutting-edge 7,600-cbm vessel completed.

The world's first methanol-fuelled container ship, Laura Maersk. Methanol as a marine fuel | Steve Bee, VPS  

How environmental legislation has driven the development of low-sulphur fuels and methanol-ready ships.


↑  Back to Top