Mon 20 Jul 2015 14:52

LNG carrier project boasts improved energy efficiency


Vessel concept is said to have led to a higher level of energy efficiency and an improved boil-off rate.



DNV GL has announced the completion of the LNGreen joint industry project, which worked to develop a state-of-the-art next-generation LNG carrier.

The project brought together experts from DNV GL and industry specialists from GTT, Hyundai Heavy Industries (HHI) and the shipowner GasLog. Each of the project partners contributed with their knowledge and experience to develop tomorrow's LNG carrier using the latest technology, within the bounds of existing shipbuilding methods, DNV GL explained today in a statement.

According to DNV GL, the vessel concept has a significantly improved environmental footprint, a higher level of energy efficiency, as well as an improved boil-off rate and cargo capacity, thus making it much better suited to future trading patterns than existing vessels.

LNGreen investigated the improvement of efficiency and performance of LNG carriers by considering actual operational conditions and optimisation in terms of hydrodynamics, machinery and system configuration. These developments were based on DNV GL's modelling suite, COSSMOS, state-of-the-art computational fluid dynamics calculations (CFD), and a containment system design, tailored to a specific operational profile and anticipated trades.

Martin Davies, the Project Manager at DNV GL stated that "using enabling computer tools we managed to develop a vessel which is approximately 8% more energy efficient and has increased its cargo volume capacity by 5%. The design is future compliant with new IGC code, Panama requirements as well as significant advances in a range of features, including the speed-range flexibility, hull form and boil-off rate".

Describing the process, DNV GL said: "The total efficiency was assessed using an integrated systems approach. LNG carrier machinery systems are highly complex featuring tightly integrated sub-systems and components, like the BOG compression trains, gas management system, reliquefaction (if any), propulsion and/or generating engines, exhaust gas economisers and boilers. The primary fuel, i.e. boil-off gas, has variable properties depending on LNG cargo type and in-voyage boil-off rate conditions. In addition, the ships usually operate on a number of trading routes. Their operating profiles vary in terms of speed, propulsion, electrical and heat demand. The above features require a rigorous model-based approach, using DNV GL COSSMOS, to assess the integrated machinery system under realistic operating conditions as experienced by GasLog.

"HHI and DNV GL carried out the hydrodynamic performance evaluation by comparing CFD simulations. Different CFD codes were applied for the comparison of resistance and self-propulsion performance but different scale effects were also considered. In addition, added resistance caused by wind and waves was investigated in order to ensure that the required power is sufficient for operation in the targeted environmental conditions.

"Cargo containment optimisation was investigated by GTT and HHI. The tank shape, necessary reinforcements and boil off rate calculations, were examined to develop alternative cargo tank designs that could yield additional cargo capacity. With a starting design point of 174,000m3 cargo capacity, cargo tank optimisation by GTT and HHI allowed for a cargo capacity increase to 182,800m3, while maintaining the same main dimensions (length overall, breadth, draft) and taking into consideration newly introduced regulations and compatibility restrictions."

Nikolaos Kakalis, Manager of DNV GL Research & Development in Greece and responsible for COSSMOS development, commented that "fusing unique competencies of key experts from across the industry, like HHI, GTT, and GasLog, with advanced tools like the COSSMOS machinery systems simulation and optimisation computer platform as well as state-of-the-art hull optimisation software, we bring innovation in practice that can generate tangible added value. As LNGreen utilizes existing technology it is important to stress that this concept design could be ordered today".


Marius Kairys, CEO of Elenger Sp. z o.o. Elenger enters Polish LNG bunkering market with ferry refuelling operation  

Baltic energy firm completes maiden truck-to-ship LNG delivery in Gdansk.

Samsung Heavy Industries (SHI) virtual reality (VR) training program developed in collaboration with Evergreen. SHI develops VR training solutions for Evergreen's methanol-fuelled ships  

Shipbuilder creates virtual reality program for 16,500 TEU boxship operations.

Illustratic image of Itochu's newbuild ammonia bunkering vessel, scheduled for delivery in September 2027. Itochu orders 5,000 cbm ammonia bunker vessel  

Japanese firm targets Singapore demonstration after October 2027, with Zeta Bunkering lined up to perform deliveries.

Bunkering of the Glovis Selene car carrier. Shell completes first LNG bunkering operation with Hyundai Glovis in Singapore  

Energy major supplies fuel to South Korean logistics firm's dual-fuel vessel.

Orient Overseas Container Line (OOCL) vessel. CPN delivers first B30 marine gasoil to OOCL in Hong Kong  

Chimbusco Pan Nation claims to be first in region to supply all grades of ISCC-EU certified marine biofuel.

The Buffalo 404 barge, owned by Buffalo Marine Service Inc., performing a bunker delivery. TFG Marine installs first ISO-certified mass flow meter on US Gulf bunker barge  

Installation marks expansion of company's digitalisation programme across global fleet.

Sogestran's fuel supply vessel, the Anatife, at the port of Belle-Île-en-Mer. Sogestran's HVO-powered tanker achieves 78% CO2 reduction on French island fuel runs  

Small tanker Anatife saves fuel while supplying Belle-Île and Île d'Yeu.

Crowley 1,400 TEU LNG-powered containership, Tiscapa. Crowley deploys LNG-powered boxship Tiscapa for Caribbean and Central American routes  

Vessel is the third in company's Avance Class fleet to enter service.

The inland LNG bunker vessel LNG London. LNG London completes 1,000 bunkering operations in Rotterdam and Antwerp  

Delivery vessel reaches milestone after five years of operations across ARA hub.

The M.V. COSCO Shipping Yangpu, China's first methanol dual-fuel containership. COSCO vessel completes maiden green methanol bunkering at Yangpu  

China's first methanol dual-fuel containership refuels with green methanol derived from urban waste.


↑  Back to Top