Fri 30 Dec 2016 07:34

Microalgae presented as solution to create green fuel, reduce food insecurity


Study presents concept of large-scale industrial cultivation of marine microalgae.



Taken from the bottom of the marine food chain, microalgae may soon become a top-tier contender to combat energy and food insecurity, according to a study by researchers associated with the Cornell Algal Biofuel Consortium.

"We may have stumbled onto the next green revolution," said Charles H. Greene, professor of earth and atmospheric sciences, and lead author of the new paper 'Marine microalgae: climate, energy and food security from the sea'. The study presents an overview to the concept of large-scale industrial cultivation of marine microalgae, or ICMM for short.

ICMM could reduce fossil fuel use by supplying liquid hydrocarbon biofuels for the shipping and aviation industries. The biomass of microalgae remaining after the lipids have been removed for biofuels can then be made into nutritious animal feeds or perhaps consumed by humans.

To make the biofuel, scientists harvest freshly grown microalgae, remove most of the water, and then extract the lipids for the fuel. The remaining defatted biomass is a protein-rich and highly nutritious byproduct - one that can be added to feeds for domesticated farm animals, like chickens and pigs, or aquacultured animals, like salmon and shrimp.

After consuming the algae-supplemented feeds, chickens produce eggs with three times the omega-3 fatty acids, according to previous Cornell research.

Growing enough algae to meet the current global liquid fuel demand would require an area of about 800,000 square miles, or slightly less than three times the size of Texas. At the same time, 2.4 billion tons of protein co-product would be generated, which is roughly 10 times the amount of soy protein produced globally each year.

Marine microalgae do not compete with terrestrial agriculture for arable land, nor does growing it require freshwater. Many arid, subtropical regions - such as Mexico, North Africa, the Middle East, and Australia - would provide suitable locations for producing vast amounts of microalgae.

A commercial microalgae facility of about 2,500 acres would cost about $400 million to $500 million. Greene said: "That may seem like a lot of money, but integrated solutions to the world's greatest challenges will pay for themselves many times over during the remainder of this century. The costs of inaction are too steep to even contemplate."

Microalgae's potential is striking. "I think of algae as providing food security for the world," said Greene. "It will also provide our liquid fuels needs, not to mention its benefits in terms of land use. We can grow algae for food and fuels in only one-tenth to one one-hundredth the amount of land we currently use to grow food and energy crops.

"We can relieve the pressure to convert rainforests to palm plantations in Indonesia and soy plantations in Brazil," Greene said. "We got into this looking to produce fuels, and in the process, we found an integrated solution to so many of society's greatest challenges."

Opening of the IMO Marine Environment Protection Committee (MEPC), 83rd Session, April 7, 2025. IMO approves pricing mechanism based on GHG intensity thresholds  

Charges to be levied on ships that do not meet yearly GHG fuel intensity reduction targets.

Preemraff Göteborg, Preem's wholly owned refinery in Gothenburg, Sweden. VARO Energy expands renewable portfolio with Preem acquisition  

All-cash transaction expected to complete in the latter half of 2025.

Pictured: Biofuel is supplied to NYK Line's Noshiro Maru. The vessel tested biofuel for Tohoku Electric Power in a landmark first for Japan. NYK trials biofuel in milestone coal carrier test  

Vessel is used to test biofuel for domestic utility company.

Pictured (from left): H-Line Shipping CEO Seo Myungdeuk and HJSC CEO Yoo Sang-cheol at the contract signing ceremony for the construction of an 18,000-cbm LNG bunkering vessel. H-Line Shipping orders LNG bunkering vessel  

Vessel with 18,000-cbm capacity to run on both LNG and MDO.

Stanley George, VPS Group Technical and Science Manager, VPS. How to engineer and manage green shipping fuels | Stanley George, VPS  

Effective management strategies and insights for evolving fuel use.

Sweden flag with water in background. Swedish government bans scrubber wastewater discharges  

Discharges from open-loop scrubbers to be prohibited in Swedish waters from July 2025.

The ME-LGIA test engine at MAN's Research Centre Copenhagen. MAN Energy Solutions achieves 100% load milestone for ammonia engine  

Latest tests validate fuel injection system throughout the entire load curve.

Terminal Aquaviário de Rio Grande (TERIG), operated by Transpetro. Petrobras secures ISCC EU RED certification for B24 biofuel blend at Rio Grande  

Blend consisting of 24% FAME is said to have been rigorously tested to meet international standards.

Avenir LNG logo on sea background. Stolt-Nielsen to fully control Avenir LNG with acquisition  

Share purchase agreement to buy all shares from Golar LNG and Aequitas.

Seaspan Energy's 7,600 cbm LNG bunkering vessel, s1067, built by Nantong CIMC Sinopacific Offshore & Engineering Co., Ltd. Bureau Veritas supports launch of CIMC SOE's LNG bunkering vessel  

Handover of Seaspan Energy's cutting-edge 7,600-cbm vessel completed.


↑  Back to Top