Wed 9 Apr 2014 20:18

DNV GL introduces 'next generation' energy efficiency methodology


Methodology is designed to help ship managers make the most out of their Ship Energy Efficiency Management Plans.



DNV GL has presented what it describes as "a novel approach" that is designed to overcome challenges of assessing onboard energy efficiency in a consistent manner. As a result, the company says priorities for improvement can be determined accurately.

In a new report released today (April 9), DNV GL answers the question: 'How can a ship manager identify the biggest sources of useful energy that are currently being wasted on their ships?'

“Ship operations and environmental legislation have become more complex, and it has become increasingly difficult to assess or even define efficiency with consistency and accuracy,” said Rune Torhaug, Director, Strategic Research & Innovation, DNV GL. "We have therefore revisited the basic and universal laws of thermodynamics to develop a methodology based on exergy, sometimes called available energy, which is a metric for describing the maximum useful energy that can be derived from a process, component or system."

According to DNV GL, the methodology can be adjusted to suit newbuilds still in the design phase or operating ships, and it is designed to help managers make the most out of their Ship Energy Efficiency Management Plans (SEEMPs). Using both on board measurements and the DNV GL modelling suite COSSMOS, energy losses throughout the ship including hull, propulsion power train, machinery and electrical systems are quantified and ranked. Even difficult-to-capture processes such as throttling and fluid mixing can be incorporated.

The report includes an analysis of a waste heat recovery system. These complex systems can easily contain 70 components. "Through our exergy-based methodology, the true sources of useful energy losses were identified, revealing a picture far from self-evident. Subsequent optimisation in DNV COSSMOS yielded an increase in fuel savings that halved the payback time of the system," said George Dimopoulos, senior researcher and project manager of this position paper.

A second study examined the fuel pre-processing sub-system for the marine fuel cell on board the offshore supply vessel Viking Lady. This resulted in a solution capable of a remarkable 50 percent reduction in exergy losses.

When the main engine of an aframax tanker was analysed using operating data in combination with COSSMOS modelling, the true sources of losses were identified with greater accuracy than a traditional energy analysis, according to Dimopoulos. "In fact, the standard energy analysis failed to identify the turbocharger as being the second largest contributor to exergy loss."

"With this 'common currency' for efficiency, DNV GL provides a way of energy management that will work for all ships, and all system and components that convert energy on board. It thus offers ship managers an unparalleled way of prioritising investment in technology alternatives or new operational strategies," DNV GL said.

Preemraff Göteborg, Preem's wholly owned refinery in Gothenburg, Sweden. VARO Energy expands renewable portfolio with Preem acquisition  

All-cash transaction expected to complete in the latter half of 2025.

Pictured: Biofuel is supplied to NYK Line's Noshiro Maru. The vessel tested biofuel for Tohoku Electric Power in a landmark first for Japan. NYK trials biofuel in milestone coal carrier test  

Vessel is used to test biofuel for domestic utility company.

Pictured (from left): H-Line Shipping CEO Seo Myungdeuk and HJSC CEO Yoo Sang-cheol at the contract signing ceremony for the construction of an 18,000-cbm LNG bunkering vessel. H-Line Shipping orders LNG bunkering vessel  

Vessel with 18,000-cbm capacity to run on both LNG and MDO.

Stanley George, VPS Group Technical and Science Manager, VPS. How to engineer and manage green shipping fuels | Stanley George, VPS  

Effective management strategies and insights for evolving fuel use.

Sweden flag with water in background. Swedish government bans scrubber wastewater discharges  

Discharges from open-loop scrubbers to be prohibited in Swedish waters from July 2025.

The ME-LGIA test engine at MAN's Research Centre Copenhagen. MAN Energy Solutions achieves 100% load milestone for ammonia engine  

Latest tests validate fuel injection system throughout the entire load curve.

Terminal Aquaviário de Rio Grande (TERIG), operated by Transpetro. Petrobras secures ISCC EU RED certification for B24 biofuel blend at Rio Grande  

Blend consisting of 24% FAME is said to have been rigorously tested to meet international standards.

Avenir LNG logo on sea background. Stolt-Nielsen to fully control Avenir LNG with acquisition  

Share purchase agreement to buy all shares from Golar LNG and Aequitas.

Seaspan Energy's 7,600 cbm LNG bunkering vessel, s1067, built by Nantong CIMC Sinopacific Offshore & Engineering Co., Ltd. Bureau Veritas supports launch of CIMC SOE's LNG bunkering vessel  

Handover of Seaspan Energy's cutting-edge 7,600-cbm vessel completed.

The world's first methanol-fuelled container ship, Laura Maersk. Methanol as a marine fuel | Steve Bee, VPS  

How environmental legislation has driven the development of low-sulphur fuels and methanol-ready ships.


↑  Back to Top