BUNKER INDEX :: Price Index, News and Directory Information for the Marine Fuel Industry



« News Home
:: Monthly Archive

News Topics
:: Air Pollution
:: Agreements & M&A's
:: Alternative Fuels
:: BunkerBlog
:: Cargoes & Storage
:: Company News
:: Efficiency, Costs & Charges
:: Environment
:: Events
:: Financial
:: Fuel Quality & Testing
:: Lubes & Additives
:: Oil Spills
:: People
:: Port News
:: Projects
:: Regulation, Legal
:: Services, Products,Technology
:: Statistics & Research
:: Vessels

Regional Archive
:: Americas
:: Asia/Oceania
:: Europe
:: M.East/Africa


BUNKER INDEX :: Price Index, News and Directory Information for the Marine Fuel Industry
Home » News



Researchers claim methanol breakthrough in bid to reach climate 'holy grail'

Could be key step towards producing methanol using renewable energy in a process that essentially recycles CO2.



Chunshan Song (left) and Xiao Jiang (right) are two Penn State researchers investigating ways to use carbon dioxide as a raw material to create fuels. Image credit: Penn State University


Updated on 10 Jul 2018 09:25 GMT

Researchers at Penn State University, US, claim to have made "dramatic improvements" to the process of converting carbon dioxide into methanol fuel by combining two metals - palladium and copper - to develop a new catalyst.

The development could be a step towards achieving what researcher Chunshan Song describes as 'the holy grail for combating climate change', and "even better than carbon-neutral or renewable fuels", where fuels are made from carbon dioxide using renewable energy in a process that essentially recycles carbon dioxide.

Walnut to football field: finding the most efficient catalyst

A key factor in converting carbon dioxide to methanol was finding a good catalyst so that methanol could be produced at an efficient rate.

Using the palladium-to-copper atomic ratio range of 0.3 to 0.4, the combination of palladium and copper is said to have yielded the most efficient conversion of methanol from carbon dioxide using nanoparticles of the catalyst dispersed on a porous support material that increased the surface area of the catalyst.

With a catalyst the size of a walnut, the internal surface area of the catalyst can cover the area of a football field, the researchers explain.

The study also found that the new formulations, using the precise atomic ratio of the two metals, increased the rate of methanol formation by three times over palladium alone and by four times over copper alone, representing a significant improvement over previous methods.

Cat-and-mouse conversion

Comparing the process to a cat catching a mouse on the surface of a catalyst, the researchers point out that for the conversion to occur, both carbon dioxide (the cat) and hydrogen (the mouse) were required.

Additionally, the ideal conditions were also needed for the 'cat' to successfully catch the 'mouse': if the cat is not able to reach the mouse, or conditions slow it down, then the cat has less success.

But by combining the two metals, it not only lowers the energetic requirements to speed up the reaction of carbon dioxide and hydrogen, but also alters the reaction pathways to produce a more desired product with higher energy efficiency, the researchers explain.

"Conventional studies focused on copper but that doesn't yield efficient results," said Chunshan Song, a Professor at the Department of Chemical Engineering and Director of the EMS Energy Institute at the Pennsylvania State University. "It's the same for palladium. But putting palladium and copper together creates a unique surface structure that shows a special selectivity to creating methanol from carbon dioxide. This study provides the fundamental insights into the very synergetic effects of using these two metals together."

The process

To create methanol, researchers pumped hydrogen and carbon dioxide into a sealed chamber of a reactor vessel packed with the catalyst and heated the contents to between 356 and 482 degrees Fahrenheit.

The carbon dioxide hydrogenation process works by decomposing water to create a hydrogen gas using renewable energy, which then bonds with the carbon dioxide on the surface of the catalyst to create methanol.

'Holy grail' for beating climate change

According to Song, the efficient production of fuels and industrial chemicals from carbon dioxide using renewable energy is "the holy grail for combating climate change because the fuels are even better than carbon-neutral or renewable fuels".

The process essentially converts greenhouse gases to fuels that emit carbon dioxide when burned. When combined with the capture of carbon dioxide from the environment, it amounts to recycling carbon dioxide instead of creating or avoiding it.

"Our current energy system largely relies on carbon-based fossil energies," Song remarked. "Even renewable fuels such as biomass, biogas and organic waste, they are all carbon-based. But in the future, where does carbon come from? If we begin using carbon from carbon dioxide, we can recycle it, create a sustainable carbon-based energy cycle, and then we stabilize the carbon dioxide concentration in the atmosphere. That's why I'm passionate about this."

Recent research developments involving methanol

Last year, researchers at the University of Liverpool claimed a breakthrough in the direct conversion of carbon dioxide and methane into liquid fuels using a non-thermal plasma process said to offer a 'promising and attractive' alternative for the synthesis of fuels.

Also in the UK, scientists in Wales claimed to have created methanol from the air around us - from methane using simple catalysis that allows methanol production at low temperatures using oxygen and hydrogen peroxide.






Related Links:

UK researchers claim breakthrough converting CO2 and methane into liquid fuels
UK scientists claim 'outstanding' results making methanol from thin air
Methanol Institute hails move to develop ISO standard for methanol

Latest News:

EGCSA 10th anniversary workshop to be held in London
EGCSA member survey reveals scrubber system increase
Oil and fuel oil hedging market update
Many unresolved issues left for last PPR meeting before 2020: IBIA
Volatility and supply
IBIA calls for bunker sample verification guidelines before 2020
GP Global inks accord to produce and market Cepsa marine lubes in India
Oil and fuel oil hedging market update
North P&I launches guide on avoiding and defending bunker disputes
Build in stockpiles and record high U.S. oil production
IMO working group develops plan to help ships prepare for 2020
Oil and fuel oil hedging market update




Page Links:

Prices
Africa
Asia
Latin America
Middle East
North America
North Europe
South Europe
Index Summary
Price Highlights
Commentaries
Futures
Prices
Antwerp
Busan
Cape Town
Fujairah
Houston
Istanbul
Kaohsiung
Las Palmas
Maracaibo
New Orleans
Piraeus
Rio de Janeiro
Rotterdam
Santos
Singapore
News
Latest News
Blogs
Archive
Americas
Asia
Europe
Middle East
News
Air Pollution
Agreements & M&A's
Alternative Fuels
Cargoes & Storage
Efficiency, Costs & Charges
Environment
Events
Financial
Fuel Quality
Lubes & Additives
Oil Spills
People
Port News
Projects
Regulation/Legal
Services, Products, Technology
Statistics & Research
Vessels
Contact & Terms
Contact Us
Advertise
Terms & Conditions
Privacy Policy
Events
Upcoming Events