This is a legacy page. Please click here to view the latest version.
Thu 12 Oct 2017, 15:20 GMT

UK researchers claim breakthrough converting CO2 and methane into liquid fuels


Non-thermal plasma process said to offer 'promising and attractive' alternative for the synthesis of fuels.



Researchers at the University of Liverpool claim they have made a "significant breakthrough" in the direct conversion of carbon dioxide (CO2) and methane (CH4) into liquid fuels and chemicals, which could help industry to reduce greenhouse gas (GHG) emissions.

In their paper, entitled 'One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis', the researchers report a "very unique" plasma synthesis process for the direct, one-step activation of carbon dioxide and methane into higher-value liquid fuels and chemicals (e.g. acetic acid, methanol, ethanol and formaldehyde).

The one-step, room-temperature synthesis of liquid fuels and chemicals from the direct reforming of CO2 with CH4 was achieved by using a novel atmospheric-pressure, non-thermal plasma reactor with a water electrode and a low-energy input.

It is the first time this process has been shown; it is a significant challenge to directly convert these two stable and inert molecules into liquid fuels or chemicals using any single-step conventional (e.g. catalysis) processes that bypass a high-temperature, energy-intensive syngas production process and high-pressure syngas processing for chemical synthesis.

Dr. Xin Tu, from Liverpool University's Department of Electrical Engineering and Electronics, said: "These results clearly show that non-thermal plasmas offer a promising solution to overcome the thermodynamic barrier for the direct transformation of CH4 and CO2 into a range of strategically important platform chemicals and synthetic fuels at ambient conditions. Introducing a catalyst into the plasma chemical process, known as plasma catalysis, could tune the selectivity of target chemicals.

"This is a major breakthrough technology that has great potential to deliver a step-change in future methane activation, CO2 conversion and utilisation and chemical energy storage, which is also of huge relevance to the energy and chemical industry and could help to tackle the challenges of global warming and greenhouse gas effect."

Methane and carbon dioxide emissions are considered GHGs that contribute to global warming and climate change. The largest source of CO2 emissions is from burning fossil fuels for electricity, heat, and transportation, while methane is mainly emitted during the production, processing, transportation and storage of natural gas and crude oils.

CO2 emissions and methane leakage have been described extensively before on this site as areas of great concern for both shipping and bunkering.

Plasma

According to the researchers, plasma - the fourth state of matter and an electrically charged gas mixture - offers a promising and attractive alternative for the synthesis of fuels and chemicals, providing a unique way to enable thermodynamically unfavourable reactions to take place at ambient conditions.

In non-thermal plasmas, the gas temperature remains low (as low as room temperature), while the electrons are highly energetic with a typical electron temperature of 1-10 eV, which is sufficient to activate inert molecules (e.g. CO2 and CH4) present and produce a variety of chemically reactive species including radicals, excited atoms, molecules and ions.

These energetic species, which are produced at a relatively low temperature, are capable of initiating a variety of different reactions. Plasma systems have the flexibility to be scaled up and down. In addition, a high reaction rate and fast attainment of steady state in a plasma process allows rapid start-up and shutdown of the plasma process compared to other thermal processes, which significantly reduces the overall energy cost and is said to offer a promising route for the plasma process powered by renewable energy (e.g. wind and solar power) to act as an efficient chemical energy storage localised or distributed system.

Image: Victoria Building, Liverpool University. Credit: Rept0n1x / Wikimedia Commons.


LPC and Gram Marine launch operations in Argentina graphic. Gram Marine delivers first marine lubricants in San Lorenzo  

Operation follows recent strategic partnerships with LPC and Servi Río.

Halten Bulk wind-assisted vessel render. Halten Bulk orders wind-assisted bulk carriers with rotor sails from Chinese yard  

Norwegian operator contracts two vessels with options for two more at SOHO Marine.

IBIA and Baltic Exchange logo side by side. IBIA introduces enhanced KYC framework for membership applications  

Trade association to use Baltic Exchange platform for sanctions screening and company verification.

Servi Río logo. Servi Río joins Gram Marine and Cyclon alliance for Argentina lube operations  

Argentine company to provide storage and transportation services for lubricant products in local market.

IMO Technical Seminar on Marine Biofuels. IMO seminar examines biofuels’ role in maritime decarbonisation  

Event drew 700 in-person and virtual participants, with 1,300 more following the online broadcast.

Wilhelmshaven Express, Hapag-Lloyd. Hapag-Lloyd to acquire ZIM for $4.2bn in cash deal  

German container line signs agreement to buy Israeli rival, subject to regulatory approvals.

VPS Maress 2.0 digital dashboard interface displayed on a monitor. VPS outlines key features of Maress 2.0 with enhanced analytics for offshore vessel efficiency  

Updated platform adds data validation, energy flow diagrams and fleet comparison tools for decarbonisation monitoring.

Two vessels at sea. IMO committee agrees NOx certification rules for ammonia and hydrogen engines  

DNV reports PPR 13 also advanced a biofouling framework and crude oil tanker emission controls.

Chart showing TTM and T3M bunker sales in Singapore, Jan 2024-Jan 2026. Singapore bunker sales set new record as TTM volumes surpass 57.5 tonnes  

Rolling 12-month bunker sales at the Port of Singapore have reached a fresh all-time high, breaking above 57.5 million tonnes for the first time, alongside a record surge in short-term demand.

Kota Odyssey vessel. PIL’s LNG-powered Kota Odyssey makes maiden call at Saudi Arabian port  

Container vessel marks first entry into the Red Sea with call at Red Sea Gateway Terminal.


↑  Back to Top